COLDNet Profile – Crossarm Deviation Angle Constraints

Deviation angle constraints can be set on the crossarms through the **Design Parameters & Libraries** Form. Select the **Crossarms** Tab and filter down to the crossarm you wish to add the deviation angle constraints to.

To set a **Maximum Devation Angle Constraint** select the check-box provided and enter in the **Maximum Deviation Angle** as shown below.

To set a **Minimum Devaiton Angle Constraint** select the check-box provided and enter in the **Minimum Deviation Angle** as shown below.

Cro	sarms	Attachment Ty Strain	Add/Edit Group N pe Filter Voltage V 22	ames Import Filter N V 3	CATAN Cross Arm of umber of wires filter	lata New Library	Change File	Save Save	As Set All St	rain Crossarms	i to "Ignore Up	lift" Set Defa	ault Uplift Cap	acity Export to C	SV Import from	CSV			
	Attachment Type	De	escription	Part No.	Voltage	Distance from Pole Top to Crossarm Attachment (m)	Maximum Deviation Angle Constraint	Maximum Deviation Angle (°)	Minimum Deviation Angle Constraint	Minimum Deviation Angle (°)	Length (mm)	Depth (mm)	Height (mm)	Mass (kg)	Drag Coefficient	Strength (MPa)	Number of wires	Vertical Capacity (kN)	,
۲.	Strain	 Strain 3Ph 27 	00×150×100	S%3/7	22 ~	-0.450		30.00			0	0	0	0	1.2	0.00	3		0
	Strain	 Strain 3Ph 27 	00×175×125	S%3/8	22 ~	-0.450				50.00	0	0	0	0	1.2	0.00	3		0
	Strain	Strain Strain 3Ph 2700x125x125 Com Strain Strain Double 3Ph 2700x150x100		S3/28	22 ~	-0.450					0	0	0	0	1.2	0.00	3		0
	Strain			S%3/7D	22 ~	-0.450					0	0	0 0	2	1.2	0.00	3		0
-	Strain	 Strain Double 	3Ph 2700×175×125	S%3/8D	22 ~	-0.450					0	0	0	0	1.2	0.00	3		0
-	Strain	 Strain Double 	3Ph 2700x125x1	\$3/28D	22 V	-0.450					0	0	0	0	1.2	0.00	3	-	0
	Strain	Term, 3Ph 27	00x150x100	TP(-2/0	22 V	-0.450					0	0	0	0	1.2	0.00	3		0
	Strain	 Term. 3Ph 270 Term. 3Ph 270 	00x175x125	1763/8	22 V	-0.450					0	0	0	0	1.2	0.00	3		0
	Strain	in v Term, Double 3Ph 2700x150x10		T%3/7D	22 *	-0.450					0	0	0	0	1.2	0.00	3	-	0
	Strain	 Term, Double 	3Ph 2700x175x125	T%3/8D	22 ×	-0.450			- H		0	0	0	0	1.2	0.00	3		0
	Strain	 Term, Double 	3Ph 2700x125x1	T3/28D	22 ~	-0.450					0	0	0	0	1.2	0.00	3	-	0
< Cross	Strain	 Trident Strain 		TRS^	22 ~	-0.550					0	0	0	0	1.2	0.00	3		0
																			>
	Crossarm Detail Strength Factors																		
	Transverse Offset (m)	Vertical Offse (m)	t Suspension Arm Length (m)						Los Car	ad Streng se Facto	gth ir								
	-1.15	0.0	0.00						Sustai	ned									
	0.00	0 0.2	58 0.00						Justa	ileu									
	2.00	0.0	0.00																
٠																			

Save the changes to the Crossarm Library and exit the form.

If you try and place a crossarm that has deviation angle constraints that do not comply with the deviation angle between spans the following message will appear.

If you still wish to use the selected crossarm select "Yes". If you wish to choose another crossarm select "No".

When a crossarm with deviation constraints is selected as the default crossarm when placing poles or adding a new circuit the user will be advised of the constraints before continuing.