Adding Circuits

- 1. Open the earlier project that we created called WalkthroughCSVImport
- 2. Select File>Save As and give the new project the name AddingTrimmingAndExtendingCircuits
- 3. Once returned to the main form select the Profiles option from the top toolbar menu. A new window will open

- 4. We are first going to add a new conductor that we will use on our third circuit
- 5. Select Conductors from the toolbar. A new window will open
- 6. Select the Voltage 'LV'
- 7. Select the Conductor Group 'LV'
- 8. Select the Conductor 'LV ABC 2C 16mm2 : LV ABC 2C 16mm2'
- 9. Enter an Everyday Load (%CBL) of '10'
- 10. Enter the No. of Wires as '1'
- 11. Enter the Max Temperature (°C) of '50'
- 12. Enter the Min Temperature (°C) of '0'

G Profile: Profile1 X											
Condu	Conductor Properties Cancel Save										
	Voltage	Conductor Group	Conductor	Everyday Load (%CBL)	No. of Wires	Max. Temperature (°C)	Min. Temperature (°C)	Comment			
	11	Standard	Libra : AAC 1350 7/3.00 Libra	12.00	3	50	0				
	11	Standard	Libra : AAC 1350 7/3.00 Libra	12.00	3	50	0				
	LV	Standard	SC/AC 3/2.75 : SC/AC 3/2.75	10.00	4	50	0				
L	LV	LV	LV ABC 2C 16mm2 : LV ABC 2C 16mm2	10	1	50	0				
٥											

- 13. Select **Save** in the top right-hand corner of the window
- 14. Select Circuits>Add Circuit. The following window will open

			_							
							•			
	- is t	he new circuit :	above or below	the Refe	rence Circui	it ?				
		 Add Circu 	it Below	• Ad	d Circuit Ab					
Calant				_	_	_	_	_	_	
Conductor	Conductor			_			_	_		
	11 Libra @12% :									
	1 Libra @12% 1	x 3								
	V LV ABC 2C 1	6mm2 @10% x								
				_			_	_		-
Are	the distances l Distances are K	bewteen circuits ingbolt to Kingt	s measured betw bolt	ween king Distance	bolts or low s are Lowes	rest wires st wire to L	owest wir			
Strain Crossarms –	a the distances l Distances are K	bewteen circuits lingbolt to Kingt	s measured betw bolt	veen king Distance	bolts or low s are Lower	rest wires ' st wire to L	?			
Strain Crossarms	the distances I Distances are K ence Circuit (mi	bewteen circuit: ingbolt to Kingt	s measured beth bolt	ween king Distance	polts or low s are Lower Crossarms tance from	rest wires st wire to L Reference	2			
Strain Crossarms	the distances are K Distances are K ence Circuit (m	bewteen circuits ingbolt to Kingt	s measured betw	veen king Distance Pin Dis	poits or low s are Lower Crossarms tance from rossarm Gn	rest wires i st wire to L Reference oup	owest wir			
Strain Crossarms Distance from Refer Crossarm Group Etendend	the distances are K Distances are K ence Circuit (m	bewteen circuits ingbolt to Kingt) :	s measured betw bolt •	Distance	polits or low is are Lowes Crossarms tance from rossarm Gro	rest wires ' st wire to L Reference oup	? .owest wir Circuit (n	ne (POA's)		
Strain Crossarms Distance from Refer Crossarm Group Dendard Crossarm	t the distances are K Distances are K ence Circuit (m)	bewteen circuits singbolt to Kingt) :	s measured betw polt	Pin Distance	crossarms tance from rossarm Gr	rest wires st wire to L Reference aup	? .owest wir Circuit (n	n) :		
Strain Crossarms Strain Crossarm Group Crossarm Group Crossarm	e the distances are K Distances are K ence Circuit (m	bewteen circuit ingbolt to Kingt	s measured bets	ween king Distance Distance Dist Dist C C	polts or low is are Lower Crossarms tance from rossarm Gri rossarm	rest wires i st wire to L Reference aup	?	e (POA's) n) :		
Strain Crossarms Strain Crossarms Straince from Refer Crossarm Group Crossarm Crossarm	e the distances i Distances are K ence Circuit (m Crossarm for ce	bewteen circuits ingbolt to Kingt) : 	s measured bets	veen king Distance Pin Dis C	bolts or low is are Lowes Crossarms tance from rossarm Gri rossarm	rest wires s st wire to L Reference oup ate Cro <u>ss</u>	circuit (n	n) : n) :	e switching	
Strain Crossarms - Crossarm Group Crossarm Group Crossarm Crossarm Use Alternate C Alternate Crossa	e the distances in Distances are K ence Circuit (m Crossarm for ce rm if switching o	bewteen circuits ingbolt to Kingt) :) : ontre phase swit centre phase	s measured bets bolt	Pin Distance Distance Dis C C	polits or low is are Lowes Crossarms tance from rossarm Gr rossarm Use Altern ternate Cro	rest wires s st wire to L Reference oup ate Crosse	2 Circuit (n srm for ce	e (POA's) n) : ntre phas	e switching	-
Strain Crossarms Instance from Refer Crossarm Crossarm Use Alternate Crossa	e the distances are K Distances are K ence Circuit (m Crossarm for ce rm if switching e	bewteen circuits ingbolt to Kingt) :) : intre phase swit centre phase	s measured bets bolt •	ween kin; Distance Dis Dis C C C C	polits or low is are Lowes Crossarms tance from rossarm Gr rossarm Use Altern Iternate Cro	est wires st wire to L Reference oup ate Crosse assarm if s	cincuit (n	e (POA's) n) : ntre phas entre pha	e switching se	-
Strain Crossams Instance from Refer Crossam Use Alternate Crossa	e the distances are K Distances are K ence Circuit (m Crossarm for ce rm if switching d	bewteen circuits singbolt to Kingt) : 	s measured bets oolt •	ween king Distance	polits or low is are Lowes Crossarms tance from rossarm Gr rossarm Use Altern Iternate Cro	est wires to L Reference oup ate Crosse	e convest wir Circuit (n srm for ce witching c	n) : ntre phas	e switching se	
Strain Crossarms - istance from Refer Crossarm Group Crossarm Use Alternate Crossa	the distances are K Distances are K ence Circuit (m Crossarm for ce rm if switching c	bewteen circuits ingbolt to Kingt) : : : : : : : : : : : : : : : : : : :	s measured betw polt	ween king Distance	solts or low sare Lowes Crossarms tance from rossarm Use Altern Iternate Cro	est wires s at wire to L Reference oup ate Crosse	Cincuit (n	e (POA's)	e switching	-
Strain Crossarms Strain Crossarms Natance from Refer Crossarm Group Crossarm Use Alternate Crossa	the distances are K Distances are K ence Circuit (m Crossarm for ce Trossarm for ce	bewteen circuits ingbolt to Kingb) :) : ontre phase swit centre phase swit	s measured betw solt •	veen king Distance	spolts or low s are Lowes Crossarms tance from rossarm Use Altern Iternate Cro (*) : 10	est wires st at wire to L Reference oup ate Crosse	Circuit (n	n) : n) :	e switching	
Strain Crossarme – Istance from Refer Crossarm Group Benefani Crossarm Use Alternate Crossa	the distances are k Distances are k ence Circuit (m Crossarm for ce rm if switching c	bewteen circuits bewteen circuits) :) :) :) :) :) :) :) :) :) :	s measured betw polt •	veen king Distance	sbolts or low is are Lowes Crossarms tance from rossarm Gr rossarm Use Altern Iternate Cro (*) : 10	est wires st st wire to L Reference oup ate Crosse ssarm if s	Circuit (n	n) : n) :	e switching	-
Strain Crossarms Istance from Refer Crossarm Group Crossarm Use Alternate Crossa	the distances are lo Distances are lo ence Circuit (<i>m</i> , Crossarm for ce Trossarm for ce	bewteen circuit ingbolt to Kingb) :) :) :) :) :) :) :) :) :) :	s measured betw solt • •	veen king Distance	sbolts or low is are Lowes Crossarms tance from rossarm Gr rossarm Use Altern Iternate Cro (*) : 10	est wires st st wire to L Reference oup ate Crosse issarm if s	Circuit (n	n) : n) : ntre phas	e switching	-

- 15. Ensure that the Reference Circuit selected is '2'
- 16. Select Add Circuit Below
- 17. Select the 'LV LV ABC 2C 16mm2 @10% x 1' Conductor
- 18. Select the distance between circuits to be measure Kingbolt to Kingbolt
- 19. Set the Strain Distance from Reference Circuit to '2'
- 20. Change the Strain Crossarm Group to 'Standard'
- 21. Leave the default Crossarm as 'ABC Term'.
- 22. Set the Pin Distance from Reference Circuit to '2'
- 23. Change the Pin Crossarm Group to 'Standard'
- 24. Leave the default Crossarm as 'ABC Angle'
- 25. Enter a Max Deviation Angle for Pin Crossarms of '10'
- 26. Ensure the Start Pole is at '1' and the End Pole is at '9'
- 27. Click Add Circuit to finalise. Profile 1 should now look like the figure below

.....

Trimming Circuits

We are now going to trim Circuit 1 between poles 7-9.

- 1. Make sure the 7th pole in the profile is highlighted with a transparent grey background
- 2. Select Circuits>Trim Circuit. The following window will open

3/45137258	4/4137259	5/41372560	6/4055123	7/4055124	8/4055280	9/4055281
	_	4	1			_
W12.5 m/5 kN	W12.5 m/5 kN	W12.5 m/5 kN	W12.5 m/5 kN	W12.5 m/5 kN	W12.5 m/5 kN	W12.5 m/5 kN
				10.650	9.959 Petra Inter. 3	3Ph 2 9/400100 2100 205ain 3Ph 2400x150x100
		Trim Circuit from Pole 7			× 200×100	7 400 2204
		Cancel		l l	Start	LV Strain 3Ph.
		O Trim towards End	± End at Pole:		ABC Term.	2055,400 ABC Term.
18:599	nter, 3Ph 2480x100 1950 Shirt and Shirt	Trim towards Sta	art End at Pole:		÷	
8.485 182 8:293	3Ph.	Select Circuits to Tr	im: Circuit 1			
	1950 LØStrain S		Circuit 2			
6:145					1985360	% PO 44 \$5281
ABC AI	ABC Term.				90 HB280 38 9.150 %40	41 % 700 90 8552 81 8.4 9 WYT 8.400
				2096004855394	8.350 BIL	00000000000000000000000000000000000000
		% D0.40 17 2260 37		39 % FU 40 383 37 47 0 36 365 % YT 2018 80	59.95	
		%7610 500560 %7005.2 %7610 500560 %7005.2	25 % PO 42 55 123	96VT9.150		
2		%YA9.000	%YT8.050			
iı		19				
%P045237258 %P0455200258	%P04147259 18	18				
%YA202800 %YA9.200	%P040333359 %YC %YT&(2000 g	29				
	%YT8.700					
1°54'32" L	44°55'59" L	0°02'30" R	39°18'01" R	9°10'10" R	7°38'47" L	
92.06	32.66	63.23	59.75	53.17	47.18	56.82

- 3. Ensure that Trim towards End is selected and the End Pole is marked at '9'
- 4. Select Circuit 1 to trim
- 5. Select **Start** to trim the circuit. Your profile will be updated as shown below

Extending Circuits

THIS FEATURE HAS NOT BE INCLUDED INTO THE CURRENT RELEASE